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Using the Liouville–von Neumann equation, we study the polarization dynamics of the polaritons localized
in a photonic dot excited by continuous-wave �cw� or pulse laser beams. Pumped by the cw and circularly
polarized laser, in the weak magnetic-field region we find a strong polariton anti-bunching and a platform
behavior in the variation in the polariton occupation with the pump field, and the latter manifestly displays the
polariton quantum blockade. In the case of using the cw and linearly polarized laser, we find the redshift of the
polariton energy in the polariton magnetic spectrums, due to the effective-attractive interaction between the
polaritons with antiparallel spins; moreover the polaritons with antiparallel spins are always anti-bunching in
the low excitation regime. Especially, we demonstrate the single-photon character of the photonic dot in the
excitation of the pulsed wave and linearly polarized laser, and the emitted-photon polarization can be conve-
niently adjusted by an applied magnetic field.
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I. INTRODUCTION

Semiconductor microcavities with embedded quantum
wells have become an attractive field for theoretical and ex-
perimental physicists, due to their unusual light-matter inter-
acting effects. The quantum-well excitons and cavity photons
can be coupled to form the mixed modes—exciton
polaritons—which have abundant physics. Therefore, semi-
conductor microcavities have huge potential applications
such as optical amplifiers,1–3 lasers,4–6 optical switchers,7

and optical gates.8 Meanwhile, semiconductor microcavities
also provide many interesting questions in fundamental
physics such as Bose-Einstein condensation9–11 and energy-
band structure.12 The exciton polaritons have been studied in
many experiments from the strong to weak exciton-photon
coupling regimes.1–3,13,14 Especially, the angle-resonant
experiment1 displayed a giant optical nonlinearity which was
well described by an enlightening three-level model.15,16 The
polarization-dependent dynamics of the polariton-polariton
scattering have also been studied in detail in many pump-
probe configurations.17–22 Technically, semiconductor micro-
cavities can be lithographed and etched into transverse size
of magnitude about from 0.1 to 1.0 �m. In such small struc-
tures, also alternatively called the photonic dots,5,23,24 the
in-cavity photons are confined in three directions. Thus, the
photonic dots have attracted many researchers to study the
localized polaritons.25,26 So far, most of the photonic dots are
fabricated by the GaAs/AlGaAs semiconductors; therefore
we will take the parameters of the GaAs/AlGaAs photonic
dots in this work.

The progress of quantum communication27 and quantum
information28 has been founded on the quantum properties of
electromagnetic fields, and one key device is the single-
photon emitter. Generally, the single-photon emitter can be
obtained by using the parametric down-conversion process
of bulk nonlinear crystals,28 attenuated lasers, semiconductor
electric quantum dots,29–32 or colored centers in diamond
nanocrystals.33 It has been theoretically suggested that the
photonic dot strongly coupled to the embedded quantum well
can also be used to achieve the single-photon emission,25 due

to the effective repulsive interactions between the quantum-
well excitons with parallel spins. Here we would follow its
formulation and extend to consider the magnetic-field-
modulated polariton bunching and anti-bunching, as well as
the single-photon emission. On the other hand, the polariza-
tion steps are recently studied in the equilibrium thermal
polaritons localized in the photonic dots.26 Because the ef-
fective interaction between the polaritons with antiparallel
spins is attractive, the polaritons in the semiconductor micro-
cavities prefer being linearly polarized,10,34 which obviously
can be disturbed by applied magnetic field.26 Experimentally,
the magnetic-field effects have been studied in detail on the
linear optical response of the polaritons.35,36

For the polaritons localized in a photonic dot, the polar-
ization dynamics has not been well studied under an applied
magnetic field, although it can be expected that the polariza-
tion dynamics may strongly influence the polariton applica-
tion to the single-photon emitter. Therefore, in this work we
will mainly focus our attention on the polariton bunching and
anti-bunching affected by the polariton polarization dynam-
ics. It is reasonable to assume that the polaritons in the pho-
tonic dot behave like ideal bosons and the magnetic field is
applied along the structure-grown axis. For simplicity, we
can further neglect the Landau quantization of electrons and
holes37 because it is not important to the polarization dynam-
ics of the polaritons.26 The effect of the magnetic field is
taken into account only by introducing the exciton Zeeman
energy.

The paper is organized as follows. In Sec. II, we derive
the rotating-wave Hamiltonian for the lower-branch polariton
and introduce the Liouville–von Neumann equation to de-
scribe the polariton polarization dynamics. In Sec. III the
numerical results are obtained and discussed in several pump
geometries. Finally, the conclusion of this work is summa-
rized in Sec. IV.

II. THEORETICAL FORMULATION

In the system of a photonic dot with spatial confinement,
we can consider only the dynamics of the fundamental pho-
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tonic mode strongly coupled to the certain excitonic level of
the quantum well, and the corresponding Hamiltonian is

H = �
�
��ECa�

†a� + �R�a�
†b� + b�

†a�� + �EX − ���B�b�
†b��

+
1

2�
��

V���b�
†b��

† b��b� + f��t�e−i�Pta�
† + f�

��t�ei�Pta�� ,

�1�

where EC�X�, a�
†�b�

†�, and a��b�� represent the energy, the
creation, and annihilation operators of the photonic �exci-
tonic� mode with spin ��=↑ ,↓�, respectively. �R is the Rabi
splitting and �B=gX�BB is the exciton Zeeman energy, with
gX being the exciton g factor, �B is the Bohr magneton, and
B is the external field. Although gX depends on the material
and structure, it is associated with the magnetic field B, so
we can take �B as the single parameter directly in the study.
The detuning ��B=EC−EX+���B depends on �B, and �� is
defined as �↑=1 and �↓=−1. V��� represents the nonlinear
interaction between the excitons with spin � and ��, and
V↑↑=V↓↓ and V↑↓=V↓↑ hold. Finally, f��t� describes the
�-polarized component of the excitation field15,16 and has the
form

f↑�t� = �fP�t��cos 	, f↓�t� = �fP�t��sin 	 , �2�

where �fP�t�� represents the amplitude of the applied excita-
tion field with frequency �P and the circular polarization
degree 
P=cos�2	� is defined. In the following, we will
mainly focus on the circularly and linearly polarized excita-
tions which correspond to 
P=1�	=0� and 
P=0�	=� /4�,
respectively.

In order to study the polariton polarization dynamics di-
rectly, we convert the photon and exciton operators �a� ,b��
into the lower and upper polariton operators �PL� , PU�� by
the transformations

PL� = CL�a� + XL�b�, PU� = CU�a� + XU�b�. �3�

By the canonical properties of these operators, we have
CU�=XL�, XU�=−CL�, and

XL� = �R/	�EL� − EX + ���B�2 + �R
2 ,

CL� = �EL� − EX + ���B�/	�EL� − EX + ���B�2 + �R
2 ,

�4b�

where

EL� =
1

2
�EC + EX − ���B − 	��B

2 + 4�R
2� �5�

represents the energy of the lower-polariton branch
with spin �. As a typical example, we can show the
magnetic-field-dependent energy of the lower polaritons
plotted in Fig. 1�a�. The following parameters of the typical
GaAs-AlGaAs photonic dots are used in Fig. 1 and
throughout this work, namely, EX=EC=0, �R=2.5 meV,
�↑=�↓=0.1 meV,25 G↑↑��B=0�=G↓↓��B=0�=4.8 meV,
and G↑↓��B=0�=−0.48 meV.26

We are interested in the dynamics of the lower polaritons.
From Eqs. �1� and �3� we can obtain the effective Hamil-
tonian for the lower polaritons, i.e.,

HLP = �
�

E�P�
† P� +

1

2 �
���

G���P�
† P��

† P��P�

+ �
�

�F��t�e−i�ptP�
† + F�

��t�ei�ptP�� , �6�

where G���=XL�
2 XL��

2 V���, F��t�=CL�f��t�, and for easy
writing we have omitted the subscript L in E�, P�

† , and P�. It
is obvious that G↑↓=G↓↑, and the variations of G and �F� / f��
with �B are shown in Figs. 1�b� and 1�c�, respectively. From
Fig. 1�b�, we can see that both G↑↑ and �G↑↓� increase, yet G↓↓
decreases with �B; all these curves indicate that the polariton
characters can be controlled by changing the magnetic field.
In addition, the pump term F��t� also depends on �B
through the Hopfield coefficient CL�. Simply speaking, be-
cause of the dependence of the detuning ��B on the magnetic
field, all the parameters in Eq. �6� are dependent on the mag-
netic field.

For studying the quantum behavior of the lower polari-
tons, it is convenient to work in the rotating frame,25 and
thus we make the following transformation for HLP to obtain

the rotating-frame Hamiltonian H̃LP, namely,

H̃LP = R†�t�HLPR�t� − i�R†�t�
�

�t
R�t� , �7�

where R�t�=e−i�pt�P↑
†P↑+P↓

†P↓�. Substituting Eq. �6� into Eq.
�7�, we have

FIG. 1. �Color online� Dependences of the �a� polariton ener-
gies, �b� nonlinear interactions, and normalized pump fields on
magnetic field.
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H̃LP = �
�

�E�P�
† P� +

1

2 �
���

G���P�
† P��

† P��P�

+ �
�

�F��t�P�
† + F�

��t�P�� , �8�

where �E�=E�−�P. Naturally, the quantum dynamics of the
lower polaritons can be studied by the rotating-frame density
matrix �̃=R†�t��R�t�, which is determined by the Liouville–
von Neumann equation

i�
d

dt
�̃ = �H̃LP, �̃� + iD�̃ . �9�

Here D�̃ represents the dissipation operator accounting for
the losses of the microcavity and has the form

D�̃ = �
�

���P��̃,P�
†� + �P�, �̃P�

†�� , �10�

where �=XL�
2 X+CL�

2 C represents the homogeneous line-
width of the lower polaritons, with X and C being the ho-
mogeneous linewidth of the excitonic and photonic modes.
For the sake of simplicity, we assume X=C, therefore the
polariton linewidth � could be treated as independent of the
magnetic field, as done in our following calculations. It is
convenient for us to expand the density operator �̃ in the
Fork basis, i.e.,

�̃ = �
n↑n↓n↑�n↓�

�̃n↑n↓n↑�n↓�
�n↑,n↓
�n↑�,n↓�� . �11�

Then, substituting Eq. �11� into Eq. �9�, the dynamic equa-
tions for the density-matrix elements �̃n↑n↓n↑�n↓�

will be ob-
tained, and with the initial polariton state, such as the
vacuum state, the polarization dynamics of the polaritons
will be fully determined.

Using the density matrix, we can easily get the occupation
number of the lower polaritons, that is,

N��t� = Tr�P��̃�t�P�
†� = �

n↑n↓

n��̃n↑n↓n↑n↓
, �12�

and the two-time second-order correlation function,

G���
�2� �t,t�� = Tr�P�Utt��P���̃�t��P��

† �P�
† , �13a�

g���
�2� �t,t�� = G���

�2� �t,t��/�N��t�N���t��� , �13b�

where Utt� represents the evolution superoperator of the
Liouville–von Neumann �9�, and satisfies Utt=1. For conve-
nience, we denote the equal-time second-order correlation
function as g���

�2� �0�=g���
�2� �t , t� in the following.

III. NUMERICAL RESULTS AND DISCUSSION

For clearly displaying the effects of a magnetic field on
the polariton polarization, this section will be divided into
three parts according to the pump-field types. They are �A�
circularly polarized and continuous-wave �cw� excitation,
�B� linearly polarized and cw excitation, and �C� linearly

polarized and pulsed wave excitation. The Adams-Bashforth-
Moulton method38 is used to solve Eq. �9� to obtain the oc-
cupation number and correlation function. Such method is
based on the multistep and the predictor-corrector technolo-
gies and so holds high efficiency and precision. In addition,
we have considered the particle states �n↑ ,n↓
 up to
n↑=n↓=10 in the calculation, and this cut-off approximation
has well satisfied the numerical precision seen from the
results.

A. Circularly polarized and cw excitation

Figure 2�a� shows the magnetic spectrum of the lower
polaritons under several pump fields with 
P=1. In this kind
of excitations, we only need to consider the spin-up polari-
tons, for the spin-down polariton is not excited. Because we
set �P=E↑��B=0�, the resonant excitations occur at �B=0.
Referred to the three lower curves in Fig. 2�a�, such resonant
peaks obviously do not shift with the pump intensity, which
is due to that the polaritons mainly occupy the single-
polariton state and the contribution of the multipolariton
states can be neglected. It has known that the blueshift of the
polariton energy comes from the repulsive interactions be-
tween the polaritons with parallel spins and increases with
the pump field. Moreover, the corresponding nonlinear terms
in Eq. �8� do not generate influence when they operate on the
single-polariton state. Therefore, if the single-polariton state
dominates in the photonic-dot system, the resonant peaks in
the magnetic spectrums will not shift, such as the three lower
curves in Fig. 2�a�. The resonant-peak shift shall be expected
as the pump field becomes strong enough. But, because the
resonant peak can be shielded by the dependence of F↑ on

FIG. 2. �Color online� Variation in the �a� occupation number
N↑ and �b� equal-time correlation function g↑↑

�2��0� with the magnetic
field in steady states pumped by several cw lasers. Here 
P=1.0 and
�P=EL↑��B=0�.
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�B, it is still difficult to observe the resonant-peak shift re-
ferred to the top curve of fP=2.0 meV in Fig. 2�a�. Clearly,
the asymmetry of the magnetic spectrum is also attributed to
the dependence of F↑ on �B.

The variation of g↑↑
�2��0� with �B is plotted in Fig. 2�b�. In

the region of ��B��1 meV, g↑↑
�2��0��1, implying the polar-

iton anti-bunching. The effective repulsive interaction G↑↑
can induce the blueshift of the polariton energy and inhibits
more-polariton injecting into the photonic dot, which is the
so-called polariton quantum blockade. Particularly, for the
low pump case �e.g., fP=0.1 meV�, g↑↑

�2��0��0 as �B�0.
Hence the polariton quantum blockade works well in this
situation. However, as ��B��3 meV, g↑↑

�2��0� approaches to
or even exceeds 1, implying that the polariton bunching ap-
pears owing to the nonresonant excitation. Simply speaking,
the polaritons are better anti-bunching in the resonant exci-
tation situation,25 and such anti-bunching can be broken by
the applied magnetic field. In addition, in the near resonant
pump region �i.e., �B�0�, we can clearly see that g↑↑

�2��0�
sharply increases with the pump field fP. In order to more
clearly reveal this, we plot the variation of N↑ and g↑↑

�2��0�
with the pump field under several magnetic fields in Figs.
3�a� and 3�b�, respectively.

It is plain that all the curves in Fig. 3�a� satisfy
log�N↑�� log�fP� no matter in low or high excitation re-
gimes, only with different proportional coefficients. This is
due to that the photonic-dot loss and nonlinear interaction
terms play major roles in the low and high excitation re-
gimes, respectively. Importantly, the platform behavior in the
curves of �B=0 and �0.3 meV in Fig. 3�a� is the pure
quantum phenomenon and manifestly demonstrates the po-
lariton quantum blockade. Thus, the repulsive interaction
strongly inhibits the polariton increase in the platform re-
gion. Naturally, the platform behavior can be overcome by

the high enough pump field, so does the polariton quantum
blockade referred to Fig. 3�b�. Strictly speaking, the polar-
iton quantum blockade just takes effect in the platform re-
gion of N↑ because the nonlinear interaction terms in Eq. �8�
can be neglected in the low excitation regime, and thus the
polariton dynamics is independent of the nonlinear interac-
tion terms. But if specifying the polariton quantum blockade
simply by g↑↑

�2��0��1,25 we can generally say that the polar-
iton quantum blockade only works well in the low excitation
regime. Due to the dependence of the detuning ��↑B� on ��B�,
the platform behaviors become weaker and weaker with in-
creasing ��B�. Meanwhile, the correlation function g↑↑

�2��0� is
evidently influenced by �B, especially in the low excitation
regime. Thus the magnetic field can conveniently be used to
change the polariton-bunching character. Moreover, the de-
pendence of F↑ on �B leads to the difference between the
cases of ���B� in Figs. 3�a� and 3�b�.

B. Linearly polarized and cw excitation

The above discussion has been focused on the circularly
polarized excitation which is independent of the polarization
dynamics. In order to study the polarization dynamics of
polaritons, the pump field is set to be linearly polarized, i.e.,

P=0, in this section. For this aim, we introduce the polar-
ization degree for the polaritons defined as


LP =
N↑ − N↓

N↑ + N↓
. �14�

Notice that when 
P=0, the rotating-frame Hamiltonian
in Eq. �8� is invariant under the transformation of
��B ,��⇔ �−�B , �̄�. Thus the occupations N↑ and N↓ are
symmetric with respect to the zero magnetic field, i.e.,
�B=0, as shown in Figs. 4�a� and 4�b�. Apparently, the po-
larization degree 
LP is centrosymmetric, as shown in Fig.
4�c�. In common view, due to G��� �G��̄�, the energy
EL↑�EL↓� should be blue shifted with increasing the pump
field fP. But from Fig. 4�a�, we see that the resonant peak of
N↑ shifts leftward with increasing fP. Besides the polariton
energy EL↑ decreases with �B, therefore, it is red shifted with
increasing fP. Consistent results for EL↓ can be obtained by
analyzing Fig. 4�b�. As indicated in Sec. III A, the nonlinear
interactions in Eq. �8� do not generate effect when they op-
erate on the vacuum or single-polariton states. Based on the
polariton occupations shown in Figs. 4�a� and 4�b�, we can
estimate that the number states playing major roles are the
vacuum, single-polariton, and double-polariton states. Obvi-
ously, the states �2,0
 and �0,2
 cause blueshift for spin-up
and spin-down polaritons, respectively, and the state �1,1

induces redshift for both them. Then, from Figs. 4�d�–4�f�
we can find that g↑↓

�2��0��g↑↑�↓↓�
�2� �0� as ��B��1 meV. Hence,

the state �1,1
 dominates among the three double-polariton
states, and thus the polariton energies will be red shifted. As
the three- or more-polariton states must be taken into ac-
count, such a red-shifted phenomenon could be weakened
due to G��� �G��̄�. But it is still difficult to observe the en-
ergy blueshift in the polariton magnetic spectrum because the
resonant peak of the magnetic spectrum can be shielded by

FIG. 3. �Color online� Variation of N↑ and g↑↑
�2��0� with the pump

field fP. Here 
P=1.0 and �P=EL↑��B=0� such as in Fig. 2.
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the dependence of F� on �B. This is similar to the corre-
sponding discussion in Sec. III A.

Considering the symmetry of the system in the case of the
linearly polarized pump, it is natural that the polariton polar-
ization is also linearly polarized when �B=0. As
��B��1 meV, due to the attractive interaction G↑↓ between
the antiparallel polaritons, the polaritons prefer to be linearly
polarized and thus the variation in the polarization 
LP with
�B becomes flatter and flatter with increasing fP, as shown in
Fig. 4�c�. This phenomenon can also be manifested by the
relative relation g↑↓

�2��0��g↑↑�↓↓�
�2� �0� referred to in Figs.

4�d�–4�f�. When ��B��3 meV, the polariton-energy shift
and pump-term variation due to the magnetic field play ma-
jor roles, thus the polaritons are prone to be circularly polar-
ized. Therefore, it can be proved that the magnetic field can
be used to efficiently adjust the polariton polarization in the
photonic-dot system. As shown in Figs. 4�d� and 4�e�, as
��B��3 meV g��

�2��0� approaches to or exceeds 1, implying
the bunching of the polaritons with parallel spins, which is
similar to the circularly polarized and cw excitation. Differ-
ently, in Fig. 4�f� the equal-time correlation function g↑↓

�2��0�
indicates that the polaritons with antiparallel spins are al-
ways anti-bunching in the low excitation regime, and with
increasing the pump field, they transit into bunching in the
central range of ��B�. This is due to that the probabilities of
multipolariton states are rather small whether in the low ex-
citation regime or in the strong magnetic-field situation.

From the above discussion, we find that the polaritons can
be strongly polarized by the magnetic field �B in the excita-
tion situation of the linearly polarized pump. In this polar-

ized pump case, the magnetic field and pump intensity play
major roles in the polariton bunching and anti-bunching. On
the other hand, from Sec. III A, we have known that the
polariton polarization is independent of the magnetic field
when the pump field is purely circularly polarized, i.e., 
LP
equals �1 as 
P= �1, no matter what values of �B. Thus, it
is natural to expect that the linearly polarized pump field can
be used to achieve the single-photon emitter whose emitted-
photon polarization can be adjusted by the magnetic field.

C. Linearly polarized and pulsed wave excitation

It is known that for a single-photon emitter, the pump
excitation should be the pulsed wave; thus in this section we
use the pulsed laser as the excitation source to investigate the
characters of the single-photon emitter structured by the pho-
tonic dot. According to Figs. 3�a� and 4�f�, the amplitude of
the pulse pump term fP�t� had better be smaller than 0.5
meV, and thus we take 0.3 meV as an example to study and
state the single-particle character of the polaritons.

When �B=0, it is obvious that the polariton system is
symmetric with respect to the polariton spin; thus the spin-up
and spin-down polaritons have the same occupations, as plot-
ted in Fig. 5�a�. But its excitation is nonresonant �the pump
frequency is set to be �P=EL↑��B=2 meV��, therefore, the
polariton occupations are smaller than the resonant excitation
cases such as the thick solid line in Fig. 5�c�. In Fig. 5�b�, we
plot the time-dependent correlation functions G���

�2� �t , t��
which have been renormalized to their maximums, respec-
tively. Due to the symmetry of Eq. �8�, the shapes of the four
correlation functions are the same. The depletion of the cen-
tral peaks indicates that no matter what the polariton spin is,
the polaritons are always anti-bunching, which just demon-
strates the single-photon character. Obviously, we are inter-
ested in the polariton anti-bunching here, and similarly, the
photon anti-bunching can be achieved in a quantum dot
single-photon turnstile device.32 In fact, the polariton bunch-
ing has been observed in the planar semiconductor
microcavities.9 In one word, in the case of �B=0 the photons
emitted from the photonic dot are linearly polarized and hold
the single-particle character.

In Figs. 5�c� and 5�d�, we set �B=2 meV and
�P=EL↑��B=2 meV�; thus the excitation is resonant for the
spin-up polariton mode and nonresonant for the spin-down
polariton mode. So the occupation of the spin-up polaritons
is much larger than the spin-down polaritons in each pulse
just as shown in Fig. 5�c�. Hence, in such arrangement the
photons emitted from the photonic dot are almost circularly
polarized, i.e., 
LP�1.0. From Fig. 5�d�, we can see that the
polaritons obviously hold the single-particle character. Con-
sidering that the Hamiltonian given in Eq. �8� is symmetric
under the transformation of �� ,�B�⇔ ��̄ ,−�B�, it is easy to
verify that 
LP�−1 and the polaritons also hold the single-
particle character when �B=−2 meV. Thus, it can be ex-
pected that the applied magnetic field can efficiently change
the polariton polarization, but the polaritons still maintain the
single-particle character which is in fact shown in Fig. 5�e�.

The quantity N̄�=���tN��t�dt represents the mean value
of the photons with spin � in each pulse, where �t is the

FIG. 4. �Color online� Variations in the polariton occupations,
polarization degree, and equal-time correlation functions with the
magnetic field. Here 
P=0 and �P=EL↑�↓���B=0�.
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pulse duration time. Thus, the total average photons in each

pulse is given by N̄=N̄↑+N̄↓. In the cases of Figs. 5�a� and

5�c�, we have N̄��B=0��0.021 and N̄��B=2 meV�
�0.32. Meanwhile, we can find that the pulse repetition
rate25 �=↑�↓� /10 is enough to avoid the overlap of the po-
lariton pulses. Hence, the quantum-bit exchange rate �

should be �=�N̄�0.32 GHz and 4.8 GHz for the cases of
�B=0 and �B=2 meV, respectively. This means that the
single-photon emitter structured by the photonic dot can hold
large quantum-bit exchange rate.

In addition, the pulse polarization of the polaritons can be

defined as 
̄= �N̄↑−N̄↓� / �N̄↑+N̄↓� whose dependence on �B

is plotted in Fig. 5�e�. It is clear that the pulse polarization 
̄
approximately linearly varies from −0.9 to 0.9 with the mag-
netic field in the range of �B� �−1.4,1.4� meV. This actu-
ally manifests that the magnetic field can efficiently adjust
the pulse polarization of the emitted photons under linearly
polarized excitation situations. In order to indicate that the
single-photon character is always maintained in changing
magnetic-field process, we define the pulse-integrated prob-
abilities for single-polariton states and multipolariton states
as �̄single=��t��̃1010+ �̃0101�dt and �̄multi=−�̄single+��t�1
− �̃0000�dt, respectively. Their ratio of �̄m/s= �̄multi / �̄single is
plotted as a function of the magnetic field by the dashed line
in Fig. 5�e�. Obviously, �̄m/s�1.2% which proves that in
such a pump arrangement, the photonic-dot system always
holds the single-particle character. Therefore, the photonic
dot can be used as a single-photon source, especially the
polarization of the emitted photons can be conveniently con-
trolled by the applied magnetic field.

IV. CONCLUSION

In this work, we have studied the polarization dynamics
of the polaritons localized in a photonic dot excited by cw or

pulse laser beams. With the canonical and rotating-wave
transformations, we have derived the effective lower-
polariton Hamiltonian which depends on applied magnetic
fields. When the pump field is cw and circularly polarized,
such as 
P=1, the resonant-peak positions in the polariton
magnetic spectrum do not depend on the pump intensity, and
near the resonant peaks, the repulsive interaction G↑↑ can
induce a high polariton anti-bunching which can be de-
pressed by the strong pump field. Further, the polariton quan-
tum blockade is definitely demonstrated by the platform be-
havior occurring in the variation in the polariton occupation
with the pump field in the weak magnetic-field case.

When the pump field is cw and linearly polarized, i.e.,

P=0, we find the redshift of the polariton energy in the
magnetic spectrum, which is due to the weak effective-
attractive interaction between the polaritons with antiparallel
spins. In this pump case, the bunching and anti-bunching
behaviors of the polaritons with parallel spins are similar to
the circularly polarized excitation situation. Differently, the
polaritons with antiparallel spins are always anti-bunching in
the low excitation regime, and with increasing the pump
field, they transit into bunching in the weak magnetic-field
region. Finally, we have demonstrated the single-photon
character of the photonic dot under the excitation of the
pulsed wave and linearly polarized pump field. Hence, the
photonic dot can be used as the single-photon emitter—
especially—the emitted-photon polarization can be conve-
niently and efficiently adjusted by applied magnetic fields.
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FIG. 5. �Color online� Time evolution of polariton occupations �panels �a� and �c�� and second-order correlation function G�2��t , t�� for
t�=0 �panels �b� and �d�� under the excitation of a train of Gaussian pulses plotted as the dotted lines in panels �a� and �c�. In panel �e�, the
mean polarization degree and probability ratio are drawn. In all panels, the Gaussian pump pulses are the same, and hold frequency
�P=EL↑��B=2 meV�, amplitude 0.3 meV, pulse duration 5 � meV−1, and period 60 � meV−1; in panels �a� and �b�, �B=0; in panels �c�
and �d�, �B=2 meV.
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